\qquad

1. State whether each scale is an example of a scale reduction or an enlargement. Explain how you know.
a) $50: 1$
b) $1: 50$
2. Calculate the actual length given the scale and the length on a scale model.
a) 2.5 cm on a $1: 48$ model
b) 48 mm on an $8: 1$ photograph
3. Given each of the following equations, find the value of " x ":

a) $\frac{3}{5}=\frac{x}{10}$	b) $\frac{2}{8}=\frac{x}{12}$	c) $\frac{7}{20}=\frac{x}{60}$	d) $\frac{12}{14}=\frac{x}{21}$
e) $\frac{4}{11}=\frac{2 x}{33}$	f) $\frac{4}{15}=\frac{10}{x}$	g) $\frac{12}{x}=\frac{6}{10}$	h) $\frac{3}{5}=\frac{3 x}{4}$

4. Given the following two shapes, use a ruler to determine the scale factor:

5. The average length of a BMW 325xi is about 4.85 meters long. A toy model of this car is reduced at a scale factor of 0.25 . What is the length of the toy model.
\qquad
6. The distance between Vancouver and Seattle is 226.5 km . The distance between the two cities on a map is about 2.3 cm apart. What is the scale factor of the map?
7. The scale factor of a map is 1: 200000000 . If the distance between the two cities on a map is 5.5 cm , how far are they apart in the real world?
8. A little photograph measuring 10 cm by 15 cm is enlarged by a scale factor of 10.5 . What is the area of the enlarged picture in cm^{2} ?
9. Given that the following polygons are similar,
a) find the lengths of $P T$ and $D E$.

b) Find the lengths of $B C$ and PT:

10. Given the following set of shapes, indicate whether they are similar or not:

11. Given that each pair are similar triangles, indicate which side in the second triangle corresponds with side "x"?

12. Naomi wants to calculate the height of a tree. She is 1.2 m tall and casts a shadow of 2.75 m . At the same time, the shadow of the tree is 10.5 m long. How tall is the tree?
13. Jason is 1.8 m tall and the sun casts a shadow of 2.5 m . A building nearby has a shadow 180 m long. Using similar triangles, how high is the building?

14. Solve for the value of " x "

